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INTRODUCTION

that helps people change behavior and manage
chronic conditions more effectively.>®

Market forces and public health needs have
accelerated adoption. The wearable healthcare
market, estimated in the tens of billions of dollars in
the early 2020s, is poised for rapid growth as devices
become more capable and integrated into clinical
workflows.[”l The COVID-19 pandemic illustrated

Over the past three decades wearable technologies
have evolved from simple step counters and
stopwatch watches into sophisticated platforms
capable of capturing a wide range of physiological,
behavioral, and contextual signals. What began as
pedometers and early digital watches in the 1990s has

blossomed into a diverse ecosystem that includes
smartwatches ~ with  medical-grade  sensors,
continuous glucose monitors worn for days, and
unobtrusive patches that monitor biochemistry in real
time.[-4]

This evolution was driven by advances in
miniaturized  sensing, low-power electronics,
wireless communications, and cloud storage. Recent
years have seen the addition of artificial intelligence,
not as a gimmick but as a substantive capability to
translate noisy, continuous data into actionable health
insights. Unlike a single laboratory test, wearables
provide dense longitudinal streams that reveal trends,
rhythms, and early deviations from baseline
physiology. When AI models are applied carefully,
these signals can identify early signs of disease,
estimate long-term risk, or support tailored feedback

the value of distributed monitoring by reducing the
need for in-person visits and enabling remote
surveillance of vital signs and symptoms; it also
exposed gaps in equity and readiness, particularly for
underserved communities.[®?]

System Architecture and Enabling Technologies
At its core, a clinically useful Al-enabled wearable is
an integrated system. Each layer, from the sensor that
touches skin to the algorithms that deliver a risk
estimate matters. Reliability and clinical value arise
from careful engineering across these layers and
thoughtful design decisions about where computation
happens and how data are shared.

Sensor Technologies

Modern wearables rely on a diverse sensor set.
Photoplethysmography (PPG) and
electrocardiography (ECG) capture cardiac rhythm
and rate variability; accelerometers and gyroscopes
quantify movement and posture; temperature sensors
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provide context about activity and health;
electrodermal activity can suggest arousal and stress;
and newer biochemical sensors sample sweat,
interstitial fluid, or other biofluids to measure
analytes such as glucose or lactate.[*9]

The choice of sensor influences everything
downstream. For example, PPG is convenient for
consumer wearables but is sensitive to motion
artifact; ECG patches give cleaner electrical signals
but are less comfortable for continuous, long-term
wear. Developers must match sensor modality to
clinical questions and design form factors that
optimize adherence while preserving data quality.
Data Preprocessing and Quality Control

Raw sensor outputs are often noisy. Therefore,
preprocessing which broadly includes filtering,
artifact removal, signal segmentation, and feature
extraction is where signal engineering meets clinical
reasoning. Simple choices such as the length of a
sliding window, how to handle missing epochs, or
whether to impute values can materially affect model
performance. Effective preprocessing pipelines
incorporate domain knowledge (for example, how
heart rate behaves during sleep versus exercise), and
they preserve provenance so clinicians can trace how
a final prediction was generated.

Robust quality control also requires on-device checks
to reject corrupted samples and server-side pipelines
to flag drift. Many high-performing systems adopt
hybrid strategies, performing lightweight at the edge
and richer aggregation in the cloud.

Al Models and Learning Paradigms

Al in wearables spans a spectrum from simple rule-
based thresholds to deep learning models trained on
millions of labeled minutes. Supervised learning is
common for classification tasks, for example
identifying atrial fibrillation from an ECG trace.
While unsupervised methods excel at anomaly
detection when labeled data are scarce.*10-12]

Recent trends include federated learning to enable
distributed model training across devices without
centralized raw data, which helps preserve privacy
while leveraging greater data  diversity.l'”
Interpretability ~ techniques  and  uncertainty
quantification are increasingly integrated to ensure
predictions are explainable to clinicians and patients,
and to indicate when a model is out of its valid
domain.

Communications and Network Architecture
Wearables connect with smartphones, gateways, and
cloud services using Bluetooth Low Energy, Wi-Fi,
cellular networks, or low-power mesh protocols.
Architectures vary from edge-centric designs, where
most computation runs on the device to maintain low
latency and preserve privacy, to cloud-centric models
that aggregate population-level data for deep
analysis. Hybrid models are common, performing
time-sensitive inference on the device while sending
summary metrics for downstream analytics and long-
term storage.

Security, Privacy, and Data Governance: Health
data are among the most sensitive types of personal

information. Encryption in transit and at rest is a
minimum requirement; additionally, techniques such
as tokenization, differential privacy, and secure
multiparty computation are gaining traction to reduce
re-identification risk. Beyond technical measures,
clear governance who owns the data, who can access
it, and how consent is obtained is central to
responsible deployment.[3]

Energy, Power, And Usability Considerations
Battery life constrains design choices. Energy
harvesting, low-power sensors, and model
compression (quantization and pruning) are technical
levers to extend device uptime. But usability also
matters: a device that requires daily charging or
causes skin irritation will have lower adherence,
reducing clinical value. Designers should prioritize
comfort and seamless integration into users’ lives.
Multimodal Integration and Digital Ecosystems
Combining signals, for example, ECG with
accelerometry, or PPG with skin temperature and
contextual smartphone data, frequently improves
accuracy and resilience. Integration with electronic
health records (EHRs), telemedicine platforms, and
clinical decision support tools are the final mile that
determines whether a wearable’s insights actually
change care.

Applications of AI Wearables in Healthcare
Al-enabled wearables have moved well beyond step
counting. They now contribute meaningfully in
diverse specialties; the examples below demonstrate
the current state and near-term potential.
Cardiovascular Health

One of the most mature applications is cardiac
rhythm monitoring. Wearable ECGs and PPG-
enabled watches can screen for atrial fibrillation and
other arrhythmias, enabling early diagnosis and
linkage to anticoagulation when appropriate.l>%10]
Remote monitoring of heart failure patients can
provide early signals of decompensation, for
example, changes in resting heart rate, nocturnal
heart rate variability, and reduced activity which may
trigger telemedicine outreach and medication
adjustments.

Endocrinology and Metabolic Health

Continuous glucose monitors (CGMs) exemplify
how wearables can transform chronic disease
management. Coupled with AI, CGMs support
predictive alerts, insulin dosing recommendations in
hybrid closed- loop systems, and personalized
behavioral nudges. As biosensor chemistries
improve, continuous monitoring of other analytics
could expand these benefits to broader metabolic
care.l’]

Respiratory and Infectious Disease

Wearables can support detection of sleep apnea,
monitor COPD exacerbations, and contribute to
syndromic surveillance for respiratory pathogens.
Work during the COVID-19 pandemic showed how
aggregated signals from large numbers of devices
could be useful for outbreak detection and for
identifying trends in population health.'!]
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Neurology and Movement Disorders

In neurology, wearables are used to detect seizures,
monitor tremor severity in Parkinson’s disease, and
measure mobility during rehabilitation. These
measures allow clinicians to tailor therapies and track
response over weeks and months a temporal
resolution that clinic visits alone cannot provide.!']
Mental Health and Behavioral Medicine

Sensors that track sleep patterns, activity, heart rate
variability, and skin conductance can provide
objective correlates for mood and stress. When
combined with self-reported data and adaptive
interventions, wearable-informed systems can help
manage anxiety, depression, and stress-related
conditions. Careful trial design and privacy-
preserving approaches are essential in this sensitive
domain.

Rehabilitation, Geriatrics, and Remote Care

Fall detection algorithms, gait analytics, and
adherence monitoring for physical therapy are
practical applications with immediate value in aging
populations and in remote rehabilitation programs.
For frail older adults, passive monitoring can detect
gradual decline earlier than periodic clinic visits,
prompting timely interventions.

Oncology, Maternal Health, and Public Health
Uses

Wearables are being explored in oncology to monitor
fatigue, sleep, and activity during treatment; in
maternal-fetal health for fetal heart rate and maternal
physiological monitoring; and in public health for
outbreak prediction, environmental exposure
tracking, and population-level surveillance.['%!4
Demonstrated Benefits and Impacts

Across clinical, patient, system, and research
domains, wearables with Al offer measurable
advantages. Clinically, they enable earlier detection
of arrhythmias and provide richer data streams that
support personalized care decisions. Patients benefit
from increased engagement and the empowerment
that comes from accessible personal health insights.
Health systems can realize reductions in unnecessary
hospital visits when remote monitoring identifies
early warning signs; research benefits from access to
longitudinal real-world data that complement
traditional trials.!'”!

However, benefits are not uniform; they depend on
device accuracy, user adherence, data integration
with care pathways, and the ability of clinicians to
interpret and act on alerts. Studies that demonstrate
outcome improvement reduced mortality, fewer
admissions, better disease control are still emerging
and are needed at scale.

Technical and Validation Challenges

Sensor drift, motion artifact, varying skin tones, and
environmental interference can degrade signal
quality. Models trained on narrow populations often
fail when exposed to a broader, more diverse user
base. Rigorous external validation, prospective
clinical trials, and real-world performance
monitoring are essential to establish generalizability
and safety [16]. Despite progress, meaningful

challenges remain before wearables become a routine
part of healthcare for everyone.

Privacy, Security, and Ethical Concerns

Data breaches and misuse of health data are real risks.
Algorithmic bias, wherein models perform worse in
underrepresented groups can exacerbate health
disparities. Ethical deployment requires transparent
reporting of model limitations, processes for
informed consent, and equitable access strategies.!'*]
Regulatory and Liability Issues

Regulatory frameworks are struggling to keep pace.
Determining when a device is a regulated medical
device versus a wellness product affects the level of
evidence required for market access. Liability
questions for instance, who is responsible if a missed
alarm results in harm remains unsettled and will
require legal and policy solutions.['?]

Usability and Human Factors

Design that ignores the end-user reduces uptake.
Accessibility, comfort, battery life, interface
simplicity, and cultural fit all influence adherences.
Implementation of science approaches that involve
stakeholders early in design and that study workflow
integration are critical to success.

Economic and Sustainability Concerns

Cost barriers exist at both device and infrastructure
levels. Moreover, environmental sustainability, the
lifecycle impacts of disposable sensors and e-waste
must be addressed as adoption scales.[']
Explainable and Trustworthy Al

Explainability methods and uncertainty estimates
make predictions more interpretable and actionable
for clinicians. Providing model rationales for
instance, which segments of an ECG contributed
most to an arrhythmia prediction builds clinician
confidence and aids verification.

Multimodal Fusion and Digital Twins

Combining physiological data with environmental,
behavioral, and genomic information creates richer,
individualized models. The ‘digital twin’ concept
which states, “a living, computational representation
of a person that updates with wearable data” is an
appealing framework for personalized prediction and
simulation.[!516]

Edge AL, Nanotech, And Immersive Health

Edge Al reduces latency and preserves privacy, while
nanotechnology = promises  highly  sensitive,
minimally invasive biochemical sensing. Immersive
technologies like VR/AR integrated with wearables
are being explored for rehabilitation and behavior
change.

Future Directions and Recommendations

To realize the promise of Al-enabled wearables,
coordinated action across research, technology,
policy, and clinical practice is required. Research
priorities should include multicenter prospective
trials that evaluate patient-important outcomes,
studies on long-term adherence, and investigations
into health equity and model fairness.
Methodologically, we recommend open benchmarks,
improved reporting standards for wearable studies,
and incentives for sharing de-identified datasets to
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accelerate replication and validation.[">!”! From a
technology perspective, device designers should
prioritize the ability to explain itself, energy
efficiency, comfort, and interoperability. Federated
learning and on-device models can mitigate privacy
risks, but their deployment requires standardized
frameworks and tooling. Regulators should consider
phased evidence requirements that balance safety
with innovation, for example, conditional approvals
tied to post-market surveillance.

Clinically, integration into electronic health records
and care pathways is essential. Clinician education
and clear protocols for responding to device alerts
will determine whether wearables improve outcomes
or simply generate noisy alarms. Finally, policies that
subsidize access in underserved communities and
that address environmental impacts will help ensure
the benefits of wearables are broadly shared.
Practical Implementation Checklist for Clinicians
and Developers

To translate wearable technologies into routine
clinical use, teams should follow a practical checklist
that covers technical, clinical, operational, and ethical
dimensions. We can progress further with the
following step-by-step approach:

- Define the clinical question: Start with a clear,
measurable objective (e.g., early AF detection in
high-risk adults) and identify outcomes that matter to
patients and clinicians.

- Select appropriate sensors and form factors: Match
sensor characteristics to the clinical task; prioritize
comfort and long-term adherence.

- Design robust validation studies: Plan prospective
validation with diverse cohorts and prespecified
performance metrics.

- Establish data pipelines and provenance: Implement
preprocessing, logging, versioning, and anomaly
detection to ensure reproducible results.

- Address privacy and consent: Use transparent
consent language; consider federated approaches and
safeguard re-identification risks.

- Integrate with clinical workflows: Ensure alerts are
actionable and integrated into EHRs to minimize
discordant workflows and alert fatigue.

- Plan for regulatory and reimbursement pathways:
Engage early with regulators, and document clinical
utility and cost-effectiveness studies.

- Monitor post-market performance: Set up
continuous monitoring for drift, bias, and safety
events; require mechanisms for timely updates.

- Design for equity and accessibility: Prioritize
testing in diverse populations and plan subsidized
access for underserved communities.

- Sustainability and lifecycle planning: Consider
repairability, recycling, and replacement programs to
reduce environmental footprint.

Case Studies and Practical Examples

Case 1: Early detection of atrial fibrillation using a
wearable: A 62-year-old individual noticed
intermittent palpitations but felt well otherwise. A
wrist-worn device with a PPG sensor and an on-
device screening algorithm flagged irregular pulse

patterns during a morning walk. The device prompted
the user to capture a brief confirmatory ECG using an
integrated single-lead ECG feature; this trace showed
patterns suspicious for atrial fibrillation. Following
an alert, the person’s primary care clinician arranged
a formal cardiology evaluation and ambulatory ECG
monitoring. A diagnosis of paroxysmal atrial
fibrillation was subsequently confirmed, leading to
discussions about stroke risk mitigation and
anticoagulation where appropriate.

This vignette illustrates how wearables can function
as a low-friction, first-line screening tool that
promotes earlier clinical engagement. Importantly,
the pathway from detection to diagnosis relied on
validated confirmatory testing and clinician
interpretation  highlighting  that  wearables
complement, rather than replace, clinical
judgment.[38

Case 2: Continuous glucose monitoring and hybrid
closed-loop insulin delivery: In individuals with
insulin-dependent diabetes, continuous glucose
monitoring (CGM) has reduced the burden of
frequent finger-prick testing and provided richer
context about glucose trends. When CGMs are
combined with automated insulin delivery
algorithms, the result can be smoother glucose
control with fewer hypoglycemic episodes. Al-
enhanced algorithms predict imminent glucose
excursions from short-term trends and can adjust
basal insulin rates accordingly, while users retain
override capabilities. Trials and real-world
implementations have shown improvements in time-
in-range and user satisfaction compared with
conventional insulin therapy.[”

This example highlights the value of integrating
biosensing with decision-support algorithms, paired
with human oversight and clear clinical safeguards.
Limitations, Open Questions, And Areas for
Further Research

While the potential for Al-enabled wearables is
substantial, several limitations constrain near-term
impact. Many devices and models are validated in
select populations and may not generalize across age
groups, ethnic backgrounds, comorbidities, or
varying lifestyles. Labeling clinical events in real-
world data remains labor-intensive; semi-supervised
methods and clinician-in-the-loop  annotation
strategies can help but require infrastructure and
funding. Furthermore, the long-term behavioral
impacts of continuous monitoring including potential
harms such as increased health anxiety or over-
integration with medical sector are not well
understood and merit study. Economic analyses that
weigh device costs, downstream healthcare
utilization, and quality-adjusted life years will inform
whether and how wearables should be reimbursed
and scaled. Finally, standardizing reporting
guidelines and data formats will simplify replication
and accelerate scientific progress.
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Evaluation Metrics, Validation, And Statistical
Considerations

Robust evaluation is at the heart of safe deployment.
For binary clinical tasks such as detecting atrial
fibrillation, common performance metrics include
sensitivity, specificity, positive predictive value
(PPV), negative predictive value (NPV), and area
under the receiver operating characteristic curve
(AUC). However, single-number summaries can be
misleading because prevalence varies across settings,
PPV and NPV shift and should be interpreted in the
context of pretest probability. Calibrating the
agreement between predicted probabilities and
observed outcomes is equally important for clinical
decision-making and is often underreported in early-
stage studies.

Beyond discrimination and calibration, decision-
analytic approaches such as net-benefit analysis,
decision curve analysis, and simulation modeling
help quantify the clinical utility of a wearable-
enabled intervention. Prospective, randomized
evaluations that measure patient-centered outcomes
(hospitalizations, quality of life, morbidity,
mortality) are the gold standard but are resource-
intensive. Well-designed pragmatic trials and
registry-based studies can bridge the gap between
controlled trials and heterogeneous real-world use.
Researchers should pre-specify endpoints, handle
missing data transparently, and perform subgroup
analyses that test performance across age, sex, skin
tone, co-morbidity burden, and other relevant strata.
Explainability, Human-Centered Design, And
Clinical Workflows

Clinicians are less likely to act on algorithmic
recommendations they do not understand.
Explainability techniques such as feature-attribution
methods for time-series data, case-level exemplars,
or simple rule-based summaries can help translate a
model’s output into clinically meaningful language.
Equally important is human-centered design:
dashboards should present concise action items,
contextual information (trend plots, previous alerts),
and clear links to guideline- recommended next steps.
Training and feedback loops are necessary for
clinician adoption. Pilot deployments that gather
qualitative feedback, measure alert acceptance rates,
and iterate on thresholds reduce the risk of alert
fatigue. Moreover, systems should include
mechanisms for clinicians to flag false positives and
for these labels to feed model retraining pipelines,
enabling continuous improvement while
safeguarding performance.

Economics, Business Models, And Environmental
Considerations

Sustainable deployment requires viable business
models. Payers and health systems expect evidence
of cost-effectiveness before committing to broad
reimbursement. Value propositions may include
reduced readmissions, fewer emergency visits,
improved disease control, and enhanced patient
engagement. Hybrid models where device vendors

partner with clinicians and payers to share risk and
rewards are emerging.

Environmental impacts should be considered from
the start. Designing for recyclability, offering device
refurbishment programs, and minimizing disposable
components will reduce e-waste. Lifecycle
assessments that account for manufacturing,
shipping, use-phase energy consumption, and end-of-
life disposal will become increasingly important as
adoption scales globally.
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CONCLUSION

Al-enabled wearables represent a transformative
technology with the potential to shift healthcare from
episodic to continuous, personalized care. The
architecture that underpins these systems, sensors,
preprocessing, models, and integration platforms is
now mature enough to support meaningful clinical
use in several domains. Yet, to translate technical
promise into measurable health improvements at
scale, stakeholders must address validation, equity,
privacy, regulatory, and sustainability challenges.
Thoughtful design, rigorous evaluation, and
collaborative policy development will determine
whether wearables become a trusted pillar of modern
healthcare.
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