

Review Article

AI-ENABLED WEARABLES IN HEALTHCARE: A COMPREHENSIVE REVIEW

Aarav Sharma¹, Ashutosh Sharma², Poornima Sharma³

¹Grade XII Student, Sabis International School, Ruwais, Abu Dhabi, UAE,

 Received
 : 13/08/2025

 Received in revised form : 02/09/2025

 Accepted
 : 28/09/2025

Corresponding Author:

Dr. Ashutosh Sharma,

Medical Officer (Government of Rajasthan), Primary Health Centre, Bai, Nawalgarh, Jhunjhunu, Rajasthan, India.

Email: ashutoshsharma436@gmail.com

DOI: 10.70034/ijmedph.2025.4.94

Source of Support: Nil, Conflict of Interest: None declared

Int J Med Pub Health 2025; 15 (4); 517-522

ABSTRACT

Artificial intelligence (AI) combined with wearable devices is moving healthcare away from episodic measurements and towards continuous and comprehensive care. This expanded review synthesizes the technological foundations, practical applications, demonstrated benefits, and outstanding challenges for AI-enabled wearables. We will discuss the architecture that powers these devices, the analytical approaches used to extract clinically useful insights, and the ethical and regulatory constraints that decides their use. Here we will emphasize more on how clinicians, patients, engineers, and policymakers can work together to responsibly develop and manage wearables for prevention, early detection, management of chronic disease, and population health. Recommendations for research priorities, policy harmonization, and design practices are provided to support translation into routine care.

Keywords: Artificial Intelligence, Wearable Technology, Digital Health, Remote Patient Monitoring.

INTRODUCTION

Over the past three decades wearable technologies have evolved from simple step counters and stopwatch watches into sophisticated platforms capable of capturing a wide range of physiological, behavioral, and contextual signals. What began as pedometers and early digital watches in the 1990s has blossomed into a diverse ecosystem that includes smartwatches with medical-grade sensors, continuous glucose monitors worn for days, and unobtrusive patches that monitor biochemistry in real time. [1-4]

This evolution was driven by advances in miniaturized sensing, low-power electronics, wireless communications, and cloud storage. Recent years have seen the addition of artificial intelligence, not as a gimmick but as a substantive capability to translate noisy, continuous data into actionable health insights. Unlike a single laboratory test, wearables provide dense longitudinal streams that reveal trends, rhythms, and early deviations from baseline physiology. When AI models are applied carefully, these signals can identify early signs of disease, estimate long-term risk, or support tailored feedback

that helps people change behavior and manage chronic conditions more effectively. [5,6]

Market forces and public health needs have accelerated adoption. The wearable healthcare market, estimated in the tens of billions of dollars in the early 2020s, is poised for rapid growth as devices become more capable and integrated into clinical workflows.^[7] The COVID-19 pandemic illustrated the value of distributed monitoring by reducing the need for in-person visits and enabling remote surveillance of vital signs and symptoms; it also exposed gaps in equity and readiness, particularly for underserved communities.^[8,9]

System Architecture and Enabling Technologies

At its core, a clinically useful AI-enabled wearable is an integrated system. Each layer, from the sensor that touches skin to the algorithms that deliver a risk estimate matters. Reliability and clinical value arise from careful engineering across these layers and thoughtful design decisions about where computation happens and how data are shared.

Sensor Technologies

Modern wearables rely on a diverse sensor set. Photoplethysmography (PPG) and electrocardiography (ECG) capture cardiac rhythm and rate variability; accelerometers and gyroscopes quantify movement and posture; temperature sensors

²Medical Officer (Government of Rajasthan), Primary Health Centre, Bai, Nawalgarh, Jhunjhunu, Rajasthan, India.

³Associate Professor, Department of Community Medicine, SKGMC, Sikar, Rajasthan, India.

provide context about activity and health; electrodermal activity can suggest arousal and stress; and newer biochemical sensors sample sweat, interstitial fluid, or other biofluids to measure analytes such as glucose or lactate. [4,6]

The choice of sensor influences everything downstream. For example, PPG is convenient for consumer wearables but is sensitive to motion artifact; ECG patches give cleaner electrical signals but are less comfortable for continuous, long-term wear. Developers must match sensor modality to clinical questions and design form factors that optimize adherence while preserving data quality.

Data Preprocessing and Quality Control

Raw sensor outputs are often noisy. Therefore, preprocessing which broadly includes filtering, artifact removal, signal segmentation, and feature extraction is where signal engineering meets clinical reasoning. Simple choices such as the length of a sliding window, how to handle missing epochs, or whether to impute values can materially affect model performance. Effective preprocessing pipelines incorporate domain knowledge (for example, how heart rate behaves during sleep versus exercise), and they preserve provenance so clinicians can trace how a final prediction was generated.

Robust quality control also requires on-device checks to reject corrupted samples and server-side pipelines to flag drift. Many high-performing systems adopt hybrid strategies, performing lightweight at the edge and richer aggregation in the cloud.

AI Models and Learning Paradigms

AI in wearables spans a spectrum from simple rule-based thresholds to deep learning models trained on millions of labeled minutes. Supervised learning is common for classification tasks, for example identifying atrial fibrillation from an ECG trace. While unsupervised methods excel at anomaly detection when labeled data are scarce. [3,10-12]

Recent trends include federated learning to enable distributed model training across devices without centralized raw data, which helps preserve privacy while leveraging greater data diversity. [12] Interpretability techniques and uncertainty quantification are increasingly integrated to ensure predictions are explainable to clinicians and patients, and to indicate when a model is out of its valid domain.

Communications and Network Architecture

Wearables connect with smartphones, gateways, and cloud services using Bluetooth Low Energy, Wi-Fi, cellular networks, or low-power mesh protocols. Architectures vary from edge-centric designs, where most computation runs on the device to maintain low latency and preserve privacy, to cloud-centric models that aggregate population-level data for deep analysis. Hybrid models are common, performing time-sensitive inference on the device while sending summary metrics for downstream analytics and long-term storage.

Security, Privacy, and Data Governance: Health data are among the most sensitive types of personal

information. Encryption in transit and at rest is a minimum requirement; additionally, techniques such as tokenization, differential privacy, and secure multiparty computation are gaining traction to reduce re-identification risk. Beyond technical measures, clear governance who owns the data, who can access it, and how consent is obtained is central to responsible deployment.^[13]

Energy, Power, And Usability Considerations

Battery life constrains design choices. Energy harvesting, low-power sensors, and model compression (quantization and pruning) are technical levers to extend device uptime. But usability also matters: a device that requires daily charging or causes skin irritation will have lower adherence, reducing clinical value. Designers should prioritize comfort and seamless integration into users' lives.

Multimodal Integration and Digital Ecosystems

Combining signals, for example, ECG with accelerometry, or PPG with skin temperature and contextual smartphone data, frequently improves accuracy and resilience. Integration with electronic health records (EHRs), telemedicine platforms, and clinical decision support tools are the final mile that determines whether a wearable's insights actually change care.

Applications of AI Wearables in Healthcare

AI-enabled wearables have moved well beyond step counting. They now contribute meaningfully in diverse specialties; the examples below demonstrate the current state and near-term potential.

Cardiovascular Health

One of the most mature applications is cardiac rhythm monitoring. Wearable ECGs and PPG-enabled watches can screen for atrial fibrillation and other arrhythmias, enabling early diagnosis and linkage to anticoagulation when appropriate. [3,8,10] Remote monitoring of heart failure patients can provide early signals of decompensation, for example, changes in resting heart rate, nocturnal heart rate variability, and reduced activity which may trigger telemedicine outreach and medication adjustments.

Endocrinology and Metabolic Health

Continuous glucose monitors (CGMs) exemplify how wearables can transform chronic disease management. Coupled with AI, CGMs support predictive alerts, insulin dosing recommendations in hybrid closed- loop systems, and personalized behavioral nudges. As biosensor chemistries improve, continuous monitoring of other analytics could expand these benefits to broader metabolic care.^[7]

Respiratory and Infectious Disease

Wearables can support detection of sleep apnea, monitor COPD exacerbations, and contribute to syndromic surveillance for respiratory pathogens. Work during the COVID-19 pandemic showed how aggregated signals from large numbers of devices could be useful for outbreak detection and for identifying trends in population health.^[9,11]

Neurology and Movement Disorders

In neurology, wearables are used to detect seizures, monitor tremor severity in Parkinson's disease, and measure mobility during rehabilitation. These measures allow clinicians to tailor therapies and track response over weeks and months a temporal resolution that clinic visits alone cannot provide. [15]

Mental Health and Behavioral Medicine

Sensors that track sleep patterns, activity, heart rate variability, and skin conductance can provide objective correlates for mood and stress. When combined with self-reported data and adaptive interventions, wearable-informed systems can help manage anxiety, depression, and stress-related conditions. Careful trial design and privacy-preserving approaches are essential in this sensitive domain.

Rehabilitation, Geriatrics, and Remote Care

Fall detection algorithms, gait analytics, and adherence monitoring for physical therapy are practical applications with immediate value in aging populations and in remote rehabilitation programs. For frail older adults, passive monitoring can detect gradual decline earlier than periodic clinic visits, prompting timely interventions.

Oncology, Maternal Health, and Public Health Uses

Wearables are being explored in oncology to monitor fatigue, sleep, and activity during treatment; in maternal-fetal health for fetal heart rate and maternal physiological monitoring; and in public health for outbreak prediction, environmental exposure tracking, and population-level surveillance.^[10,14]

Demonstrated Benefits and Impacts

Across clinical, patient, system, and research domains, wearables with AI offer measurable advantages. Clinically, they enable earlier detection of arrhythmias and provide richer data streams that support personalized care decisions. Patients benefit from increased engagement and the empowerment that comes from accessible personal health insights. Health systems can realize reductions in unnecessary hospital visits when remote monitoring identifies early warning signs; research benefits from access to longitudinal real-world data that complement traditional trials.^[17]

However, benefits are not uniform; they depend on device accuracy, user adherence, data integration with care pathways, and the ability of clinicians to interpret and act on alerts. Studies that demonstrate outcome improvement reduced mortality, fewer admissions, better disease control are still emerging and are needed at scale.

Technical and Validation Challenges

Sensor drift, motion artifact, varying skin tones, and environmental interference can degrade signal quality. Models trained on narrow populations often fail when exposed to a broader, more diverse user base. Rigorous external validation, prospective clinical trials, and real-world performance monitoring are essential to establish generalizability and safety [16]. Despite progress, meaningful

challenges remain before wearables become a routine part of healthcare for everyone.

Privacy, Security, and Ethical Concerns

Data breaches and misuse of health data are real risks. Algorithmic bias, wherein models perform worse in underrepresented groups can exacerbate health disparities. Ethical deployment requires transparent reporting of model limitations, processes for informed consent, and equitable access strategies.^[13]

Regulatory and Liability Issues

Regulatory frameworks are struggling to keep pace. Determining when a device is a regulated medical device versus a wellness product affects the level of evidence required for market access. Liability questions for instance, who is responsible if a missed alarm results in harm remains unsettled and will require legal and policy solutions.^[12]

Usability and Human Factors

Design that ignores the end-user reduces uptake. Accessibility, comfort, battery life, interface simplicity, and cultural fit all influence adherences. Implementation of science approaches that involve stakeholders early in design and that study workflow integration are critical to success.

Economic and Sustainability Concerns

Cost barriers exist at both device and infrastructure levels. Moreover, environmental sustainability, the lifecycle impacts of disposable sensors and e-waste must be addressed as adoption scales.^[14]

Explainable and Trustworthy AI

Explainability methods and uncertainty estimates make predictions more interpretable and actionable for clinicians. Providing model rationales for instance, which segments of an ECG contributed most to an arrhythmia prediction builds clinician confidence and aids verification.

Multimodal Fusion and Digital Twins

Combining physiological data with environmental, behavioral, and genomic information creates richer, individualized models. The 'digital twin' concept which states, "a living, computational representation of a person that updates with wearable data" is an appealing framework for personalized prediction and simulation.^[15,16]

Edge AI, Nanotech, And Immersive Health

Edge AI reduces latency and preserves privacy, while nanotechnology promises highly sensitive, minimally invasive biochemical sensing. Immersive technologies like VR/AR integrated with wearables are being explored for rehabilitation and behavior change.

Future Directions and Recommendations

To realize the promise of AI-enabled wearables, coordinated action across research, technology, policy, and clinical practice is required. Research priorities should include multicenter prospective trials that evaluate patient-important outcomes, studies on long-term adherence, and investigations into health equity and model fairness. Methodologically, we recommend open benchmarks, improved reporting standards for wearable studies, and incentives for sharing de-identified datasets to

accelerate replication and validation. [15,17] From a technology perspective, device designers should prioritize the ability to explain itself, energy efficiency, comfort, and interoperability. Federated learning and on-device models can mitigate privacy risks, but their deployment requires standardized frameworks and tooling. Regulators should consider phased evidence requirements that balance safety with innovation, for example, conditional approvals tied to post-market surveillance.

Clinically, integration into electronic health records and care pathways is essential. Clinician education and clear protocols for responding to device alerts will determine whether wearables improve outcomes or simply generate noisy alarms. Finally, policies that subsidize access in underserved communities and that address environmental impacts will help ensure the benefits of wearables are broadly shared.

Practical Implementation Checklist for Clinicians and Developers

To translate wearable technologies into routine clinical use, teams should follow a practical checklist that covers technical, clinical, operational, and ethical dimensions. We can progress further with the following step-by-step approach:

- Define the clinical question: Start with a clear, measurable objective (e.g., early AF detection in high-risk adults) and identify outcomes that matter to patients and clinicians.
- Select appropriate sensors and form factors: Match sensor characteristics to the clinical task; prioritize comfort and long-term adherence.
- Design robust validation studies: Plan prospective validation with diverse cohorts and prespecified performance metrics.
- Establish data pipelines and provenance: Implement preprocessing, logging, versioning, and anomaly detection to ensure reproducible results.
- Address privacy and consent: Use transparent consent language; consider federated approaches and safeguard re-identification risks.
- Integrate with clinical workflows: Ensure alerts are actionable and integrated into EHRs to minimize discordant workflows and alert fatigue.
- Plan for regulatory and reimbursement pathways: Engage early with regulators, and document clinical utility and cost-effectiveness studies.
- Monitor post-market performance: Set up continuous monitoring for drift, bias, and safety events; require mechanisms for timely updates.
- Design for equity and accessibility: Prioritize testing in diverse populations and plan subsidized access for underserved communities.
- Sustainability and lifecycle planning: Consider repairability, recycling, and replacement programs to reduce environmental footprint.

Case Studies and Practical Examples

Case 1: Early detection of atrial fibrillation using a wearable: A 62-year-old individual noticed intermittent palpitations but felt well otherwise. A wrist-worn device with a PPG sensor and an ondevice screening algorithm flagged irregular pulse

patterns during a morning walk. The device prompted the user to capture a brief confirmatory ECG using an integrated single-lead ECG feature; this trace showed patterns suspicious for atrial fibrillation. Following an alert, the person's primary care clinician arranged a formal cardiology evaluation and ambulatory ECG monitoring. A diagnosis of paroxysmal atrial fibrillation was subsequently confirmed, leading to discussions about stroke risk mitigation and anticoagulation where appropriate.

This vignette illustrates how wearables can function as a low-friction, first-line screening tool that promotes earlier clinical engagement. Importantly, the pathway from detection to diagnosis relied on validated confirmatory testing and clinician interpretation highlighting that wearables complement, rather than replace, clinical judgment.^[3,8]

Case 2: Continuous glucose monitoring and hybrid closed-loop insulin delivery: In individuals with insulin-dependent diabetes, continuous glucose monitoring (CGM) has reduced the burden of frequent finger-prick testing and provided richer context about glucose trends. When CGMs are combined with automated insulin delivery algorithms, the result can be smoother glucose control with fewer hypoglycemic episodes. AIenhanced algorithms predict imminent glucose excursions from short-term trends and can adjust basal insulin rates accordingly, while users retain override capabilities. Trials and real-world implementations have shown improvements in timein-range and user satisfaction compared with conventional insulin therapy.^[7]

This example highlights the value of integrating biosensing with decision-support algorithms, paired with human oversight and clear clinical safeguards.

Limitations, Open Questions, And Areas for Further Research

While the potential for AI-enabled wearables is substantial, several limitations constrain near-term impact. Many devices and models are validated in select populations and may not generalize across age groups, ethnic backgrounds, comorbidities, or varying lifestyles. Labeling clinical events in realworld data remains labor-intensive; semi-supervised methods and clinician-in-the-loop annotation strategies can help but require infrastructure and funding. Furthermore, the long-term behavioral impacts of continuous monitoring including potential harms such as increased health anxiety or overintegration with medical sector are not well understood and merit study. Economic analyses that weigh device costs, downstream healthcare utilization, and quality-adjusted life years will inform whether and how wearables should be reimbursed and scaled. Finally, standardizing reporting guidelines and data formats will simplify replication and accelerate scientific progress.

Evaluation Metrics, Validation, And Statistical Considerations

Robust evaluation is at the heart of safe deployment. For binary clinical tasks such as detecting atrial fibrillation, common performance metrics include sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and area under the receiver operating characteristic curve (AUC). However, single-number summaries can be misleading because prevalence varies across settings, PPV and NPV shift and should be interpreted in the context of pretest probability. Calibrating the agreement between predicted probabilities and observed outcomes is equally important for clinical decision-making and is often underreported in early-stage studies.

Beyond discrimination and calibration, decision-analytic approaches such as net-benefit analysis, decision curve analysis, and simulation modeling help quantify the clinical utility of a wearable-enabled intervention. Prospective, randomized evaluations that measure patient-centered outcomes (hospitalizations, quality of life, morbidity, mortality) are the gold standard but are resource-intensive. Well-designed pragmatic trials and registry-based studies can bridge the gap between controlled trials and heterogeneous real-world use. Researchers should pre-specify endpoints, handle missing data transparently, and perform subgroup analyses that test performance across age, sex, skin tone, co-morbidity burden, and other relevant strata.

Explainability, Human-Centered Design, And Clinical Workflows

Clinicians are less likely to act on algorithmic recommendations they do not understand.

Explainability techniques such as feature-attribution methods for time-series data, case-level exemplars, or simple rule-based summaries can help translate a model's output into clinically meaningful language. Equally important is human-centered design: dashboards should present concise action items, contextual information (trend plots, previous alerts), and clear links to guideline-recommended next steps. Training and feedback loops are necessary for clinician adoption. Pilot deployments that gather qualitative feedback, measure alert acceptance rates, and iterate on thresholds reduce the risk of alert Moreover, systems should mechanisms for clinicians to flag false positives and for these labels to feed model retraining pipelines, enabling continuous improvement safeguarding performance.

Economics, Business Models, And Environmental Considerations

Sustainable deployment requires viable business models. Payers and health systems expect evidence of cost-effectiveness before committing to broad reimbursement. Value propositions may include reduced readmissions, fewer emergency visits, improved disease control, and enhanced patient engagement. Hybrid models where device vendors

partner with clinicians and payers to share risk and rewards are emerging.

Environmental impacts should be considered from the start. Designing for recyclability, offering device refurbishment programs, and minimizing disposable components will reduce e-waste. Lifecycle assessments that account for manufacturing, shipping, use-phase energy consumption, and end-of-life disposal will become increasingly important as adoption scales globally.

Acknowledgements and Author Notes

The authors thank clinicians, engineers, and patients who have contributed insights on wearable technologies and their real-world use. This expanded manuscript aims to synthesize practical guidance drawn from published evidence and implementation experience. Any remaining errors are the responsibility of the authors.

CONCLUSION

AI-enabled wearables represent a transformative technology with the potential to shift healthcare from episodic to continuous, personalized care. The architecture that underpins these systems, sensors, preprocessing, models, and integration platforms is now mature enough to support meaningful clinical use in several domains. Yet, to translate technical promise into measurable health improvements at scale, stakeholders must address validation, equity, privacy, regulatory, and sustainability challenges. Thoughtful design, rigorous evaluation, and collaborative policy development will determine whether wearables become a trusted pillar of modern healthcare.

REFERENCES

- Steinhubl SR, Muse ED, Topol EJ. The emerging field of mobile health. Sci Transl Med. 2015;7(283):283rv3.
- Piwek L, Ellis DA, Andrews S, Joinson A. The rise of consumer health wearables: Promises and barriers. PLoS Med. 2016;13(2):e1001953.
- Perez MV, Mahaffey KW, Hedlin H, et al. Large-scale assessment of a smartwatch to identify atrial fibrillation. N Engl J Med. 2019;381:1909–1917.
- Heikenfeld J, Jajack A, Rogers J, et al. Wearable sensors: Modalities, challenges, and prospects. Lab Chip. 2018;18(2):217–248.
- Clifton L, Clifton DA. Wearable devices for health monitoring: State of the art and future challenges. Annu Rev Biomed Eng. 2019;21:1–27.
- Kim J, Campbell AS, de Ávila BE, Wang J. Wearable biosensors for healthcare monitoring. Nat Biotechnol. 2019;37:389–406.
- Reddy S, Shukla D, Ghosh A, et al. Continuous glucose monitoring and artificial pancreas systems: Current status and future prospects. Diabetes Technol Ther. 2020;22(5):342– 352.
- 8. Gresham G, Soremekun O, Summers J. Wearable sensors and machine learning in cardiovascular care: Current and future perspectives. Curr Opin Cardiol. 2021;36:288–296.
- 9. Bayoumy K, Gaber M, Elshafeey A, et al. Smart wearable devices in cardiovascular care: Where we are and how to move forward. Nat Rev Cardiol. 2021;18:581–599.
- 10. Wang R, Blackburn G, Desai M, et al. Accuracy of wrist-worn heart rate monitors. JAMA Cardiol. 2017;2(1):104–106.

- Shcherbina A, Mattsson CM, Waggott D, et al. Accuracy in wrist-worn, sensor-based measurements of heart rate and energy expenditure. J Pers Med. 2017;7(2):3.
- Capozza K, Donahue M, Eickholt JT, et al. Federated learning for healthcare: Opportunities and challenges. IEEE J Biomed Health Inform. 2021;25(8):2926–2936.
- Bent B, Goldstein BA, Kibbe WA, Dunn JP. Investigating sources of bias in AI models trained on wearable health data. NPJ Digit Med. 2020;3:80.
- Mishra T, Wang M, Metwally AA, et al. Pre-symptomatic detection of COVID-19 from smartwatch data. Nat Biomed Eng. 2020;4:1208–1220.
- Dall'Olio M, Bartoli A, Capra M, et al. Digital twins in healthcare: Emerging applications and challenges. Comput Biol Med. 2023;158:106746.
- Majumder S, Mondal T, Deen MJ. Wearable sensors for remote health monitoring. Sensors (Basel). 2017;17:130.
- Haescher M, Rojas J, Schüssler F, et al. Machine learning for predictive health: Opportunities and challenges for wearable devices. NPJ Digit Med. 2022;5:72.
- 18. Kwon S, Lee Y, Lee J, et al. Deep learning-based prediction of health status using multimodal wearable sensors. IEEE Access. 2021;9:129830–129843.